PHYSICAL REVIEW E VOLUME 54, NUMBER 3 SEPTEMBER 1996

Wave-function method used to study the Bethe coupler
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The Bethe coupler is reinvestigated by use of the wavefunction method for the propagation of the electro-
magnetic waves in waveguides. The directivity of the secondary guide and the coupling factor are derived by
computing the transmission coefficients through the hole of the coupler. A comparison is made with the
standard result§S1063-651%96)11808-0

PACS numbg(s): 42.65.Wi, 84.40.Az, 73.40.Gk

I. INTRODUCTION function method, is also useful by its simplicity and flexibil-
ity in dealing with various geometries encountered in the
It is well known that the Bethe coupl¢l,2] consists of physics of the microwaves guides. The wave-function
two superposed identical waveguides of uniform rectangulamethod is used in the present paper to compute the transmis-
cross section, which communicate with each other by a sma#lion coefficients through the hole of the Bethe coupler for
cylindrical hole, bored in their common wall. Usually the the two modes TE; and TM,q. The directivity and the cou-
main guide is operated in the FEmode and the problem is pling factor are then readily obtained, and the results are
to compute the power released at the ends of the secondatpmpared with those of the usual approach.
guide. It has been shown that the Bethe coupler has direc- In the next section the wave-function method is briefly
tional properties, i.e., the forward and backward poweys outlined and the transmission coefficient of a waveguide is
and Py, respectively, in the secondary guide are distinctderived. The results are applied to the Bethe coupler in Sec.
from each other, and the directivity Il and the directivity and the coupling are discussed in the
last section.

P¢
D=10 logg — 1
o Pb ( ) Il. THE WAVE-FUNCTION METHOD

reaches a maximum for a certain value of the anglee- It is well known that the propagation of the electromag-
tween the axes of the two guides. The reason for this netic waves through a waveguide proceeds by two types of
dependence of the directivity resides in that an anisotropigfansverse standing modes, TE and TM. In the former case
TE,, is also excited in the cylindrical hole, besides the iso-the fields are given by thel, component of the magntetic
tropic TM o mode. In addition, a related parameter definingfield along the guide axis

the quality of the coupler is the coupling fac®©r defined as .
A P P Hy= F(x,y)e ke oot @3

P.
C=10 log, P—L (20 where

2\ f —
whereP; is the input power entering the main guide. (Axy+&9T=0,

Usually, the directivity and the coupling of the Bethe cou-
pler is computed by assuming that the power is injected into (at/an)r=0,
the secondary guide by diffraction of the radiation by the :
small, coupling hole. As is well known, Lord Rayleigh's " be;mg the vector normal to th€ contour of the cross
theory of diffraction for short wavelengtfi8] has been de- S€ction, the wave vectois and « being related to the fre-
veloped by Bethé1,2] into an approximate vectorial theory duéncye by
for the diffraction by the coupling hol¢4,5]. Recently, a 9 oo, 2
method has been introducé,9] that allows one to study w*=c’k"+ wp,
the transmission of electromagnetic radiation through (4)
waveguides in much the same manner as the wave tunneling
through a potential barrier. This method, is not restricted to wo=CK,
radiation wavelengths much shorter than the hole size, and
recently it has been applied successfully in describing thavith ¢ denoting the light velocity. Usually, the function
propagation of the electromagnetic waves throughf(X,y) is normalized over the cross section of the guide,
waveguides by analogy with the quantum tunneling phenom-
enon[10-12. Apart from being free of the above-mentioned J’ IF(x,y)|2dS=1
restriction, this method, which we may call the wave- 2 '
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For the TM waves the magnetic field, is replaced in (3) Backward
by the electric fieldE,, and the boundary condition is
f|1‘*:0.

The plane wave along the direction expressed by (3)
may be reflected or absorbed by, or transmitted through,
various small objects or media placed inside the waveguide,
as well as variations of the cross section, which amount to
connecting two or more waveguides, resonant cavities, etc. It J
may also be diffracted by small holes bored in the guide  gyqteq secondary

6 T
walls, etc. In all these cases we are interested in the ampli- guide P
tude a, of the plane wave, such that we are led to introduce
the wave functiori8,9 -
18,9

.
A

1 .
W(z,t)= —a,e kY 6 §
V2w I'\E
b b Forward
by -
Incident Main guide

wave

H,=f(x,y)V8mwo¥(z,t) (6)

for the TE modes, and a similar relationship 6y in the
case of the TM modes. It has been shdsrd] in this case

FIG. 1. General view of a Bethe coupler.

that the density of energfper unit length is given by whereR andT are the reflection and, respectively, transmis-
5 o1t 12 sion coefficients. They will be determined, together wikh
w|ay|?=20%V| (1) andB, by requiring the continuity of the wave function and
) of its derivative atz=0 and z=I|. The calculations are
and the energy flux is straightforward and one obtains
S=cnowlay?, 8 o ikl
where 1= Goshd +i[(x—K)Tzeklsinhed © )
n:(l_wé/wZ)l/Z According to (6) the ratio of the transmitted energy to the

incident energy i§T|%. We apply this result to the Bethe

is the refractive index of the guide; i.e., the energy is transSOUPIEN in the next section.

ported with the group velocitgn. In addition, the wave-

function given by(5) satisfies a Klein-Gordon type equation

in 1+ 1 dimensions according t(ﬂ.), and adensity and a IIl. THE DIRECTIVITY AND THE COUPLING FACTOR
current of “plane waves” of positive frequencies OF THE BETHE COUPLER

A general view of the Bethe coupler is given in Fig. 1.
The two identical waveguides have a rectangular cross sec-

: : ; o tion of sidesa and b; for the main guide it extends over
can be defined, which satisfy the continuity equafi®h As '
one can see, the whole picture shares many essential featurg@ <X<0 and 0<y<b. We assumeb>a, such that a
with quantum physic$8, ). TE_Ol is e?(C|ted, of frequencw, and wave vectok along the
In order to illustrate how the method works we apply it 9uide axis, related by
here to the computing of the transmission coefficient of a
waveguide. Suppose that a plane wave of wave vdctisr

sent along a waveguide of length ranging fromz=0 10 14 radiation passes from the main guide into the secondary

z=1. We assume that the lowest frequency transverse modg,q hrough a small cylindrical hole of radisand length
allowed by the waveguide has such a high frequengyhat | ",,re in the common wall of the guidek i6 the double

the wave vector along the guide axis is imaginary, and defhickness of the wallat x=0, y=b/2, z=0. The passage of

note it byix. We have therefore radiation proceeds by the two most accessible modes excited
in the cylindrical hole, TMand TE;;; their frequencies are
given by wom e=2mC/apm R, Where a,=3.4 anda,=1.6
(see, for example, Reff4,5]), and, therefore, they are much
higher thanw. Accordingly, the wave vectors of the radiation
k24 Re k2 22 propagating along the cylindrical hole are purely imaginary,

’ being given by

— 21,2 2\1/2
w=(c%k>+ wj)!

w?/c?=Kk?+ (m/b)>2. (12)

k= — K%+ w3/ c?. 9

The wave function is given by

V(z)={ Ae“*+Be %, 0<z<I (10)
Tek 1<z, w?/C?= — k§ o Wi o C2. (13)
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1+ 2|x|cosp+|x|?

Dmax=10 logio 1—2|x|cosp+|x|?

: (19

which become® .~ 40/x|cosp for |x|<1.
Similarly, the coupling factor given by (2) is obtained as

{a) (b) R?

v
C=-10log,, —p (Tmt TecosH)|, (20)

FIG. 2. Sketch of the distribution of the transverse electric field

in a cylindrical hole for the TMy mode(a) and the TE; mode(b). where(15) has been used; we recall here tNg, in (15) is
related to the wave function of the radiation entering the
main guide by the square root of the area ratio of the two

The cylindrical hole may be viewed as a Waveguide, thQ;orresponding Cross sections, as seefQD)_

radiation entering it from the main guide having the wave

vector k (directed along thex axis) given by (12). If we

denote the wave function in the main guide ¥y, and the IV. DISCUSSION
wave function transmitted into the secondary guide by
¥, then we have for the two modes The wavelength\ of the radiation in a Bethe coupler is of
the order of the transverse size of the waveguides and much
Vorime=Tme¥in, (14) longer than the radiuR of the hole. In this case, according

to (12) and(13) we havek/kp, <1 andx given by(17) may

o - , be approximated by
where the transmission coefficierits, . are given by(11)

with «, . being given by (13). The T\, mode has an iso- K Sinhipl — 2i (K/ k) coshe|

tropic distribution of transverse fields, shown schematically X~ — = o : (21)

in Fig. 2@. Consequently, the emerging wave function Ke Sinficel =2i (K/ice) cosheel

WV outm contributes equally to the forward and backwardypger these circumstances we may distinguish three limiting
wave functions in the secondary guide. On the contrary, thezses. The first corresponds to

TE,; mode has the electric field directed along the axis of

the main guide at the hole centgs shown in Fig. @)]. kmel ~1/R<R/IN<1,

Consequently, it will contributel ,.cosf to the forward

wave function and¥ . .cos@—#6) to the backward wave for which

function, so that we may write

1o (i) 1+,272|( 1 1) 22
x~1+ —(ko— ko) =1+i—| —— —|.
= (Tt TeCOD) Vi, 2k e KR | af, g

Since|x|=1, the directivity reaches its maximum value
q’b: (Tm_ TeCOS9)‘I’in ’ (15)

kR2/ 72|

1/a§— 1/aﬁ1 23

by making use of(14). Since the energy density and the Dmax=20 lleO(

energy flux are proportional tp¥; p|2, we get straightfor-
wardly the directivity for 6=0, according to the discussion given in the preceding
section. The second case corresponds to

1+ xco¥

= - R/IN<I/R<1,
D =20 log T xcod |’ (16
when
where
K2, k{1 1 ail KR,
) x=—7|1-27| =~ | |= 2|15 o (aqn—ag) |
T coshel +i[ (k5 —k2)/2k mk]sinhuc | Ke Km Ke/] @m m
X=Tellm= coshel +i[ (k2—k?)/2k K]sinhkgl (24)
(17 The maximum directivity is given in this case 049),
. 2, 2
Making use ofx=|x|'? it is easy to find out that the direc- D220 log mt e (25)
tivity D given by (16) has a maximum: max— o a2—az)’

D ma= 20 logyo|cot ¢/2)| (18) and is reached fod=0. Finally, the third case is given by

R/N<1<I/R
for cos9=1/|x| if |x|>1; if |x|<1 the maximum is obtained
for #=0 and has the value and
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FIG. 3. The directivity given by16) for x given by (17) (D, ° 0.001 0.002 0003 0.004 0.005
solid line) and forxy given by (28) D4, dotted ling vs frequency
for 1=0.28 mm,R=1.5 mm,b=2.28 cm, andh=42°. Radius (m)

X= (k! ko)€M [ 1—2ik(1Lky— 1lke)]

= (el ay)e” PR tam[ 1 — i (KR/ ) (arm— o) ];

(26)
the directivity attains its maximum value
Do =402 o= (27l/R)(Lag— Vay) @7
max— am

FIG. 4. The couplingC given by (20)(solid line) andC, cor-
responding to (29) and (3@otted ling as functions of the radius
of the circular hole fol =2.54 mm,b=2.28 cm, andd=42°, and
w=217X9.6 GHz.

Fe= e—zw[(1/1.311)2—1/>\§],

(30

= e—zﬁ[<1/1.711)2—1/>\§],

with d=2R for =254 mm, b=2.28 cm, 6=42°, and

w=2mX9.6 GHz. One can see that the present results are in
ood agreement with the classical ones for large values of
he hole radius and high frequencies, as expected from the

and of frequencies we are in intermediate situations, and NQisgjcal theory of the Bethe coupler. Particularly interesting
in the limiting cases discussed above. For example, 0[5 the slow variation of the maximum value of the directivity

[=0.28 mm,R=1.5 mm,b=2.28 cm, andv=27Xx 10 GHz
we find out that the directivity given b§l6) and(17) reaches
its maximum for6=42°.

As is well known[4,5], the classical description of the
Bethe coupler assumes thain (17) is given by

xg=exe " m[1—(mc/bw)?]. (28

The directivityD given by (16) and(17), and the directivity
D4 corresponding tay instead ofx in (16) are shown in Fig.
3 versus frequency fdr=0.28 mm,R=1.5 mm,b=2.28 cm.

In Fig. 4 the coupling facto€ given by(20) is compared
with the classical coupling factd#4,5]

’7Td3 1 2FE
Cq=-—-20 |Oglom cosf+ E()\/)\o) F_H ) (29)

where

computed here over a relatively wide range of frequencies, as
shown in Fig. 3(solid line), as compared with the corre-
sponding classical quantity shown in Fig. 3 by the dotted
line. In addition, one may remark that the coupling computed
here acquires higher values than the classical ones for
smaller holes, as those encountered in realistic situations.

In conclusion, one may say that the propagation of the
electromagnetic waves through a waveguide can be de-
scribed in a very convenient manner by using the well-
known quantum-mechanical concepts. The availability of
simple equivalent representations for the waveguides allows
a fast and accurate analysis. Various applications of the
wave-function method, such as the analysis of the evanescent
mode waveguide bandpass filter, the waveguide sandwhich
filter, etc. are in progress.
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