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The Bethe coupler is reinvestigated by use of the wavefunction method for the propagation of the electro-
magnetic waves in waveguides. The directivity of the secondary guide and the coupling factor are derived by
computing the transmission coefficients through the hole of the coupler. A comparison is made with the
standard results.@S1063-651X~96!11808-0#

PACS number~s!: 42.65.Wi, 84.40.Az, 73.40.Gk

I. INTRODUCTION

It is well known that the Bethe coupler@1,2# consists of
two superposed identical waveguides of uniform rectangular
cross section, which communicate with each other by a small
cylindrical hole, bored in their common wall. Usually the
main guide is operated in the TE01 mode and the problem is
to compute the power released at the ends of the secondary
guide. It has been shown that the Bethe coupler has direc-
tional properties, i.e., the forward and backward powersPf
and Pb , respectively, in the secondary guide are distinct
from each other, and the directivity

D510 log10
Pf

Pb
~1!

reaches a maximum for a certain value of the angleu be-
tween the axes of the two guides. The reason for thisu
dependence of the directivity resides in that an anisotropic
TE11 is also excited in the cylindrical hole, besides the iso-
tropic TM10 mode. In addition, a related parameter defining
the quality of the coupler is the coupling factorC, defined as

C510 log10
Pi

Pf
, ~2!

wherePi is the input power entering the main guide.
Usually, the directivity and the coupling of the Bethe cou-

pler is computed by assuming that the power is injected into
the secondary guide by diffraction of the radiation by the
small, coupling hole. As is well known, Lord Rayleigh’s
theory of diffraction for short wavelengths@3# has been de-
veloped by Bethe@1,2# into an approximate vectorial theory
for the diffraction by the coupling hole@4,5#. Recently, a
method has been introduced@6,9# that allows one to study
the transmission of electromagnetic radiation through
waveguides in much the same manner as the wave tunneling
through a potential barrier. This method, is not restricted to
radiation wavelengths much shorter than the hole size, and
recently it has been applied successfully in describing the
propagation of the electromagnetic waves through
waveguides by analogy with the quantum tunneling phenom-
enon@10–12#. Apart from being free of the above-mentioned
restriction, this method, which we may call the wave-

function method, is also useful by its simplicity and flexibil-
ity in dealing with various geometries encountered in the
physics of the microwaves guides. The wave-function
method is used in the present paper to compute the transmis-
sion coefficients through the hole of the Bethe coupler for
the two modes TE11 and TM10. The directivity and the cou-
pling factor are then readily obtained, and the results are
compared with those of the usual approach.

In the next section the wave-function method is briefly
outlined and the transmission coefficient of a waveguide is
derived. The results are applied to the Bethe coupler in Sec.
III and the directivity and the coupling are discussed in the
last section.

II. THE WAVE-FUNCTION METHOD

It is well known that the propagation of the electromag-
netic waves through a waveguide proceeds by two types of
transverse standing modes, TE and TM. In the former case
the fields are given by theHz component of the magntetic
field along the guide axis

Hz5 f ~x,y!ei ~kz2v0t !, ~3!

where

~Dx,y1k2! f50,

~] f /]n!G50,

n being the vector normal to theG contour of the cross
section, the wave vectorsk andk being related to the fre-
quencyv by

v25c2k21v0
2 ,

~4!

v05ck,

with c denoting the light velocity. Usually, the function
f (x,y) is normalized over the cross section of the guide,

E u f ~x,y!u2dS51 .
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For the TM waves the magnetic fieldHz is replaced in (3)
by the electric fieldEz , and the boundary condition is
f uG50.
The plane wave along thez direction expressed by (3)

may be reflected or absorbed by, or transmitted through,
various small objects or media placed inside the waveguide,
as well as variations of the cross section, which amount to
connecting two or more waveguides, resonant cavities, etc. It
may also be diffracted by small holes bored in the guide
walls, etc. In all these cases we are interested in the ampli-
tudeak of the plane wave, such that we are led to introduce
the wave function@8,9#

C~z,t !5
1

A2v
ake

i ~kz2vt ! ~5!

by

Hz5 f ~x,y!A8pv0C~z,t ! ~6!

for the TE modes, and a similar relationship forEz in the
case of the TM modes. It has been shown@8,9# in this case
that the density of energy~per unit length! is given by

vuaku252v2uCu2 ~7!

and the energy flux is

S5cnvuaku2, ~8!

where

n5~12v0
2/v2!1/2

is the refractive index of the guide; i.e., the energy is trans-
ported with the group velocitycn. In addition, the wave-
function given by~5! satisfies a Klein-Gordon type equation
in 111 dimensions according to(4), and adensity and a
current of ‘‘plane waves’’ of positive frequencies

v5~c2k21v0
2!1/2

can be defined, which satisfy the continuity equation@8#. As
one can see, the whole picture shares many essential features
with quantum physics@8,9#.

In order to illustrate how the method works we apply it
here to the computing of the transmission coefficient of a
waveguide. Suppose that a plane wave of wave vectork is
sent along a waveguide of lengthl , ranging fromz50 to
z5 l . We assume that the lowest frequency transverse mode
allowed by the waveguide has such a high frequencyv0 that
the wave vector along the guide axis is imaginary, and de-
note it by ik. We have therefore

k252k21v0
2/c2. ~9!

The wave function is given by

C~z!5H eikz1Re2 ikz, z,0

Aekz1Be2kz, 0,z, l

Teikz, l,z,

~10!

whereR andT are the reflection and, respectively, transmis-
sion coefficients. They will be determined, together withA
andB, by requiring the continuity of the wave function and
of its derivative atz50 and z5 l . The calculations are
straightforward and one obtains

T5
e2 ikl

coshk l1 i @~k22k2!/2kk#sinhk l
. ~11!

According to (6) the ratio of the transmitted energy to the
incident energy isuTu2. We apply this result to the Bethe
coupler in the next section.

III. THE DIRECTIVITY AND THE COUPLING FACTOR
OF THE BETHE COUPLER

A general view of the Bethe coupler is given in Fig. 1.
The two identical waveguides have a rectangular cross sec-
tion of sidesa and b; for the main guide it extends over
2a,x,0 and 0,y,b. We assumeb.a, such that a
TE01 is excited, of frequencyv, and wave vectork along the
guide axis, related by

v2/c25k21~p/b!2. ~12!

The radiation passes from the main guide into the secondary
one through a small cylindrical hole of radiusR and length
l , bored in the common wall of the guides (l is the double
thickness of the wall! at x50, y5b/2, z50. The passage of
radiation proceeds by the two most accessible modes excited
in the cylindrical hole, TM10 and TE11; their frequencies are
given by v0m,e52pc/am,eR, wheream>3.4 andae>1.6
~see, for example, Refs.@4,5#!, and, therefore, they are much
higher thanv. Accordingly, the wave vectors of the radiation
propagating along the cylindrical hole are purely imaginary,
being given by

v2/c252km,e
2 1v0m,e

2 /c2. ~13!

FIG. 1. General view of a Bethe coupler.
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The cylindrical hole may be viewed as a waveguide, the
radiation entering it from the main guide having the wave
vector k ~directed along thex axis! given by ~12!. If we
denote the wave function in the main guide byC in and the
wave function transmitted into the secondary guide by
Cout, then we have for the two modes

Coutm,e5Tm,eC in , ~14!

where the transmission coefficientsTm,e are given by~11!
with km,e being given by (13). The TM10 mode has an iso-
tropic distribution of transverse fields, shown schematically
in Fig. 2~a!. Consequently, the emerging wave function
C outm contributes equally to the forward and backward
wave functions in the secondary guide. On the contrary, the
TE11 mode has the electric field directed along the axis of
the main guide at the hole center@as shown in Fig. 2~b!#.
Consequently, it will contributeC out ecosu to the forward
wave function andCout ecos(p2u) to the backward wave
function, so that we may write

C f5~Tm1Tecosu!C in ,

Cb5~Tm2Tecosu!C in , ~15!

by making use of~14!. Since the energy density and the
energy flux are proportional touC f ,bu2, we get straightfor-
wardly the directivity

D520 log10U 11xcosu

12xcosu U, ~16!

where

x5Te /Tm5
coshkml1 i @~km

2 2k2!/2kmk#sinhkml

coshkel1 i @~ke
22k2!/2kek#sinhkel

.

~17!

Making use ofx5uxu iw it is easy to find out that the direc-
tivity D given by ~16! has a maximum:

Dmax520 log10ucot~w/2!u ~18!

for cosu51/uxu if uxu.1; if uxu,1 the maximum is obtained
for u50 and has the value

Dmax510 log10S 112uxucosw1uxu2

122uxucosw1uxu2D , ~19!

which becomesDmax'40uxucosw for uxu!1.
Similarly, the coupling factor given by (2) is obtained as

C5210 log10U pR2

ab
~Tm1Tecosu!U, ~20!

where~15! has been used; we recall here thatC in in ~15! is
related to the wave function of the radiation entering the
main guide by the square root of the area ratio of the two
corresponding cross sections, as seen in~20!.

IV. DISCUSSION

The wavelengthl of the radiation in a Bethe coupler is of
the order of the transverse size of the waveguides and much
longer than the radiusR of the hole. In this case, according
to ~12! and~13! we havek/km,e!1 andx given by~17! may
be approximated by

x'
km

ke

sinhkml22i ~k/km!coshkml

sinhkel22i ~k/ke!coshkel
. ~21!

Under these circumstances we may distinguish three limiting
cases. The first corresponds to

km,el; l /R!R/l!1,

for which

x'11
i l

2k
~km

2 2ke
2!511 i

2p2l

kR2 S 1

am
2 2

1

ae
2D . ~22!

Sinceuxu>1, the directivity reaches its maximum value

Dmax>20 log10S kR2/p2l

1/ae
221/am

2 D ~23!

for u>0, according to the discussion given in the preceding
section. The second case corresponds to

R/l! l /R!1,

when

x>
km
2

ke
2 F122i

k

l S 1

km
2 2

1

ke
2D G5

ae
2

am
2 F12 i

kR2

2p2l
~am

2 2ae
2!G .

~24!

The maximum directivity is given in this case by~19!,

Dmax>20 log10S am
2 1ae

2

am
2 2ae

2D , ~25!

and is reached foru50. Finally, the third case is given by

R/l!1! l /R

and

FIG. 2. Sketch of the distribution of the transverse electric field
in a cylindrical hole for the TM10 mode~a! and the TE11 mode~b!.
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x>~km /ke!e
~km2ke!l@122ik~1/km21/ke!#

>~ae /am!e2~2p l /R!~1/ae21/am!@12 i ~kR/p!~am2ae!#;

~26!

the directivity attains its maximum value

Dmax>40
ae

am
e2~2p l /R!~1/ae21/am! ~27!

for u50.
For realistic values of the parameters of the Bethe coupler

and of frequencies we are in intermediate situations, and not
in the limiting cases discussed above. For example, for
l50.28 mm,R51.5 mm,b52.28 cm, andv52p310 GHz
we find out that the directivity given by~16! and~17! reaches
its maximum foru542°.

As is well known @4,5#, the classical description of the
Bethe coupler assumes thatx in ~17! is given by

xd5e~ke2km!l@12~pc/bv!2#. ~28!

The directivityD given by~16! and~17!, and the directivity
Dd corresponding toxd instead ofx in ~16! are shown in Fig.
3 versus frequency forl50.28 mm,R51.5 mm,b52.28 cm.

In Fig. 4 the coupling factorC given by~20! is compared
with the classical coupling factor@4,5#

Cd5220 log10
pd3

3abl Fcosu1
1

2
~l/l0!

2
FE

FH
G , ~29!

where

FE5e22p@~1/1.31d!221/l0
2
#,

~30!

FH5e22p@~1/1.71d!221/l0
2
#,

with d52R for l52.54 mm, b52.28 cm, u542°, and
v52p39.6 GHz. One can see that the present results are in
good agreement with the classical ones for large values of
the hole radius and high frequencies, as expected from the
classical theory of the Bethe coupler. Particularly interesting
is the slow variation of the maximum value of the directivity
computed here over a relatively wide range of frequencies, as
shown in Fig. 3~solid line!, as compared with the corre-
sponding classical quantity shown in Fig. 3 by the dotted
line. In addition, one may remark that the coupling computed
here acquires higher values than the classical ones for
smaller holes, as those encountered in realistic situations.

In conclusion, one may say that the propagation of the
electromagnetic waves through a waveguide can be de-
scribed in a very convenient manner by using the well-
known quantum-mechanical concepts. The availability of
simple equivalent representations for the waveguides allows
a fast and accurate analysis. Various applications of the
wave-function method, such as the analysis of the evanescent
mode waveguide bandpass filter, the waveguide sandwhich
filter, etc. are in progress.
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FIG. 3. The directivity given by~16! for x given by ~17! (D,
solid line! and forxd given by (28) (Dd , dotted line! vs frequency
for l50.28 mm,R51.5 mm,b52.28 cm, andu542°.

FIG. 4. The couplingC given by (20)~solid line! andCd cor-
responding to (29) and (30)~dotted line! as functions of the radius
of the circular hole forl52.54 mm,b52.28 cm, andu542°, and
v52p39.6 GHz.
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